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Experiments and simulations of simple reaction-diffusion systems in bounded domains with spa-
tially nonlocal coupling display interesting pulse motions that are absent without the nonlocal effect.
These include pulses that stick to the boundaries, “bounce” off them, or disappear at one boundary
and reappear at the other, as if the domain was periodic. We numerically show that, for a two-
variable model system, the transitions between these motions occur through global bifurcations.
The transition from a wall-bound stationary front to a “back-and-forth” moving (bouncing) pulse
occurs through a symmetric crisis. This motion evolves into a “unidirectional” motion, in which a
pulse disappears at one boundary as a new one is born at the other, through a gluing bifurcation.
The relationship between the spatiotemporal behavior and its phase-space representation is shown,
as well as the importance of the nonlocal effect in creating the required global phase-space structure.

PACS number(s): 82.20.Wt, 05.45.4+b, 05.70.Ln

I. INTRODUCTION

The dynamics of stationary and traveling fronts and
pulses in reaction-diffusion systems are of interest in
many fields. Models of the form

ou 5
B?ZDV u+ f(u) (1)

have been studied extensively, where u € R™ is a vector
of concentrations and D € R™ x R™ is a diagonal ma-
trix of diffusion coefficients. Models of this form include
the (real) Ginzburg-Landau equation and the activator-
inhibitor models of biological and chemical pattern for-
mation. Coullet and Iooss [1] summarize the local bifur-
cation theory of stationary spatially periodic solutions to
Eq. (1) in one dimension in an unbounded or periodic do-
main. Elezgaray and Arneodo [2,3] study a two-variable
model of this form, with Dirichlet boundary conditions,
to explore the possible behavior of the Couette flow re-
actor [4]. In particular they observe a global bifurcation
(crisis) induced by competition between the inherent ten-
dency for the system to “ignite” and the “extinguished”
state enforced at the boundaries. The temporal behavior
is complex, but the spatial behavior is relatively simple,
with no propagating patterns. These studies and most
others are limited to cases where the underlying phenom-
ena are spatially local and also generally to periodic or
infinite domains. Results such as these may not be valid
when spatially nonlocal effects are important. In such
cases Eq. (1) must be modified to read

%’t‘ =DV3u+ f (u,/h(U(m))dw) : (2)

The subject of this work is the dynamics of fronts and
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propagating pulses in a nonlocal model and the global
bifurcations underlying the dynamics. Nonlocal phe-
nomena arise directly in numerous applications, includ-
ing spatially extended nonlinear current systems [5-7],
ferromagnetic systems [5] and heterogeneous catalytic
and electrochemical problems [8-21]. They also arise in-
directly when considering the nonlinear interactions of
waves traveling in opposite directions in systems whose
behavior is, strictly speaking, local [22,23]. Finally, they
arise in strictly local models for which some compo-
nents have very large characteristic length scales, either
through very rapid diffusion of the components or slow
reaction.

In heterogeneous catalytic systems, the motivation for
this work, nonlocal effects arise in two ways. Catalytic
wires or ribbons in a flowing reactive gas stream are used
in many studies of catalytic processes. These can be elec-
trically heated to control, for example, the average tem-
perature of the ribbon. This mode of control introduces
a nonlocal effect into the dynamics, as a change in cur-
rent changes the resistive heating of the entire ribbon
[10,14,16]. The model studied here is an idealization of
such an experiment. In other studies, a catalyst is placed
in a well-mixed reactor [8,20,21]. The mixing in the gas
phase is much faster than transport on the surface, so
fluctuations at one point on the surface are communi-
cated rapidly to the entire surface through the gas phase.
Thus surface elements are globally coupled.

In a typical (local) excitable reaction-diffusion sys-
tem in a bounded domain, a pulse generally vanishes
upon reaching a boundary and the system relaxes to the
ground state. In the system we consider, this behavior is
forbidden, as the average “temperature” in the domain is
kept constant by a controller. Since a pulse, once formed,
is forbidden from leaving the domain, intuitively we ex-
pect that it will either stick to the boundary, bounce
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off the boundary, or vanish as the temperature increases
elsewhere in the domain to maintain a constant average
value. All of these possibilities are indeed observed in
the simulations; the transitions between these different
behaviors form the subject of this work.

In particular, we consider two transitions in a model of
a catalytic ribbon: (i) a transition from a stationary front
to a traveling pulse that “bounces” back and forth from
boundary to boundary [Figs. 1(a)-1(c) and 2(a)]; (ii) a
transition from this motion to a “unidirectional” pulse
that travels until it reaches a wall, where it disappears
while another traveling pulse is born at the opposite wall
[Figs. 2(a)-2(d)]. In this pattern, each succeeding pulse
travels in the same direction, so the pattern appears very
similar to a simple traveling pulse in a periodic domain.
Back-and-forth temperature pulses are observed experi-
mentally on a catalytic ribbon [16] and both back-and-
forth and unidirectional patterns are found as the result
of current instabilities in a dc gas discharge [7]. Neither
transition is covered by the local bifurcation scenarios
of Coullet and Iooss [1] and we show that they occur
through global bifurcations. The first transition occurs
through a symmetric crisis [24,25]. The second is a glu-
ing bifurcation, an interaction between two symmetric
heteroclinic cycles [26,27]. The correspondence between
the phase space and physical (spatiotemporal) behavior
is clarified and the role of the nonlocality in the formation
of these patterns and transitions is discussed.

II. MODEL

The results we present are solutions to a model that is
motivated by studies of the atmospheric pressure oxida-
tion of a chemical species on an electrically heated ribbon
of a catalytic metal in a flow reactor [8-19,28,29]. Sur-
face temperature (T') is a fast, autocatalytic variable and
the surface catalytic activity (@) is a slow, nondiffusing

7=10.53

11.54 11.78 11.78*
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FIG. 1. Stationary to back-and-forth transition. The hor-
izontal axis is position, vertical is time. Black signifies low
temperature, white is high. (a) Stationary front; (b) oscil-
latory front; (c) chaotic back-and-forth motion; (d) unstable
symmetric antiphase motion. The asterisk indicates that re-
flection symmetry was enforced. Because of symmetry, the
left and right halves of this pattern individually satisfy the
equations and boundary conditions in a domain of half the
length shown (i.e., Z = 5.89).
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FIG. 2. Back-and-forth to unidirectional transition: (a) pe-
riodic back-and-forth motion; (b) and (c) intermediate pat-
terns; (d) unidirectional motion.

variable. The ratio between the kinetic time scales for T'
and 6 is €, and typically is small. The model is [28,29]

T g, .
e5p = VT = £(T,651)
| =T(T,0) —n [1+ 8T - T)| (T - 7o)
+1? [1 + (T — T)] , (3a)
% =g(T,0) = exp [—Ed(T_1 - T_l)] (T, 6)
—Ka(1—0) exp(—E,/T), (3b)
ar
5 =0 z=0,2, (3¢c)
I(T,0) = o (3d)

T 0+ K.exp(E/T)’

The nullcline f(7T,6;I) = 0 is S shaped for typical
values of electric current I, while the nullcline g(T',0) = 0
is single valued but nonlinear. The dimensionless length
Z is the distinguished parameter in this study. Other
parameter values are fixed at ¢ = 0.0295, K, = 17.08,
o« = 05482, B = 0.371, n = 1.84, K. = 1.9 x 10715,
E = 71.53, E, = 44.71, Eq = 13.41, T, = 2.000, Ty =
1.097, and T = 1.974. Details of the motivation and
formulation of the model are given in Refs. [28] and [29].

In the case of fixed current and spatial uniformity, the
dynamics occur on the (7,6) phase plane. The steady
states are the intersections of the nullclines f(7T',60;I) = 0
and g(T,0) = 0. Depending on I and K,, there are one or
three steady states. When € — 0 the steady states on the
upper (“ignited”) and lower (“extinguished”) branches of
f = 0 are stable, while those on the intermediate branch
are unstable. A limit cycle (relaxation oscillation) is ob-
tained when the unique steady state is unstable. De-
pending on the values of I and K,, the system can be
classified in the usual way as excitable (FE), oscillatory
(O), or bistable (B). A narrow parameter range also ex-
ists where three steady states exist, but only one is stable
(B'). The saddle-node bifurcation that separates B’ and
O regimes leads directly from a stable steady state to
a stable relaxation oscillation through a so-called global
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saddle-node bifurcation [30,31].

The full spatiotemporal behavior, of course, does not
occur on the phase plane. Relaxing the restriction of
spatial uniformity, but keeping I fixed, this model is es-
sentially similar to the classical FitzZHugh-Nagumo equa-
tions for nerve impulse transmission. However, if the av-
erage temperature of the ribbon is fixed (by controlling
the ribbon’s overall electrical resistance), the current is
determined by the integral constraint:

4
%/0 T(2)dz = T,. (4)

Integration of Eq. (3a) over the domain and application of
(3¢) and (4) leads to an explicit expression for the current
I as a functional of T and 6. Substitution of the result
into Eq. (3a) yields an integro-differential model in the
form of Eq. (2). When the integral constraint is applied,
the phase plane classification is only an instantaneous
one, as the current is no longer fixed. The transitions we
discuss here occur in a range of K, values near the upper
edge of the regime in which O behavior can arise [29].

The nonlocal effect induced by the constraint, Eq. (4),
is desynchronizing; an increase in temperature at one
point on the surface increases the electrical resistance of
the ribbon. In response, the control decreases the current
passing through the ribbon, thus decreasing the tempera-
ture elsewhere on the catalyst surface. The desynchroniz-
ing nonlocal mechanism changes the stability characteris-
tics of the system with respect to uniform (wave number
zero) fluctuations [5]. This result is expected intuitively,
as a uniform fluctuation demands synchronized behav-
ior of distant surface elements, while the nonlocal effect
works against this type of behavior. Conversely, sinu-
soidal perturbations are permitted, as their leading order
effect on the resistance is nil. The present system is most
susceptible to long-wavelength perturbations. Thus, be-
cause uniform fluctuations are inhibited, the most unsta-
ble wave number is unity. In addition, the nonlocal effect
accounts for the stability of the traveling pulses observed
below, as growth in the size of a hot region on the ribbon
decreases the current, inhibiting further growth.

The computations use finite differences for spatial dis-
cretization and a semi-implicit Runge-Kutta method for
time discretization. Parameter continuation [32] is used
to compute unstable solutions and the eigenvalues and
eigenfunctions of their linearizations. Thus unstable
states that contribute to global phenomena can be iden-
tified.

III. TRANSITION FROM STATIONARY FRONT
TO TRAVELING PULSE

In an infinite or periodic domain, the transition from a
stationary spatially periodic pattern of pulses to a travel-
ing one occurs through a local infinite period bifurcation,
which breaks the time invariance and reflection symmetry
of the pattern [1]. The boundaries forbid such a transi-
tion here and the birth of a traveling pulse is much more
complex. Note that the phase plane characterization is
bistable for the entire current range encountered during
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this transition. For relatively small Z, a stable stationary
front exists near a wall [Fig. 1(a)]. By reflection symme-
try, there are two such solutions; the hot region is either
at the left wall or the right. (These solutions are born at
a pitchfork bifurcation at Z = 7.69.) A pulse initiated
anywhere in the domain will travel to one wall or the
other and “stick” there, evolving into one of these two
stationary solutions. As Z increases above Z = 10.76,
a Hopf bifurcation [leading to Fig. 1(b)] followed by a
period-doubling cascade transforms the stable stationary
front into a chaotic attractor. The position of the front
changes irregularly, but the hot region is still localized.
For slightly larger Z, the localized pattern persists for
a time, then “escapes” from the wall in the form of a
traveling pulse. The pulse travels to the other wall, os-
cillates irregularly for a while, then escapes back [Fig.
1(c)]. The process repeats indefinitely, but the time be-
tween escapes varies. The time average of the chaotic
pattern is reflection symmetric. As the length increases
further, the motion becomes more regular and eventually
evolves into a periodic “back-and forth” traveling pulse
that appears to bounce off the boundaries [Fig. 2(a)].
Figure 3(a) shows a time-delay reconstruction of Tp —
Ty, for the chaotic attractor of Fig. 1(c), where T and
Ty, are the temperatures at the right and left boundaries.
The knots at the lower left and upper right are the in-
tervals of chaotic, but localized front motion. The large
excursions correspond to traveling pulses. The attractor
is clearly symmetric (invariant under rotation by 7 in this
projection), in accordance with the reflection symmetry
of the time-averaged spatial pattern, and approaches a
saddle point at the origin, indicating the proximity to a
crisis. The two asymmetric chaotic attractors formed by
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FIG. 3. (a) Time-delay reconstruction of Tr — T, for the
chaotic pattern of Fig. 1(c); (b) instantaneous temperature
profiles from Figs. 1(c) (dashed) and 1(d) (solid) at the point
of closest approach to one another.
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the period-doubling cascade have collided with the sta-
ble manifold of a reflection symmetric pattern to form
a symmetric attractor [24,25]. Underlying this behavior
is a homoclinic bifurcation involving the symmetric sad-
dle point. This saddle point is in fact a reflection sym-
metric limit cycle, an “antiphase oscillation” [Fig. 1(d)]
born at a subcritical Hopf bifurcation at Z = 12.41. Fig-
ure 3(b) shows instantaneous temperature profiles at the
closest approach of the antiphase and traveling pulse mo-
tions, clearly showing their proximity. Presumably, even
closer to the actual crisis a pulse should approach the
center of the domain, then undergo antiphase oscillation
for some time before returning to the wall. This has not
been observed, because the entire transition, including
the period-doubling cascade, takes place in a very nar-
row interval in Z.

As mentioned in the Introduction, pulses in lo-
cal reaction-diffusion equations typically disappear at
boundaries, unlike the bouncing pulses found above.
However, one atypical example, due to Tuckwell [33],
is worth mentioning, because it does produce bounc-
ing pulses like those in Fig. 2(a), and does so through
a mechanism similar to that of the present nonlocal sys-
tem. In the above results, as a pulse approaches a bound-
ary and the ignited region begins to shrink, the electric
current spikes upward to compensate, preventing extinc-
tion of the pulse. Tuckwell proposed a local model that
is “rigged” such that if two pulses approach each other
(equivalent by symmetry to a pulse approaching a no-
flux wall), a “boost” is given to the reaction terms, pre-
venting the colliding pulses from relaxing to the ground
state. Instead, they bounce, just as we observed above.
Tuckwell did not provide a physical motivation for the
boost in the reaction terms in his model, but the effect
arises naturally in systems with desynchonizing nonlocal
coupling.

IV. BACK-AND-FORTH
TO UNIDIRECTIONAL TRANSITION

The back-and-forth motion persists until Z ~ 26.9,
above which the transition to unidirectional pulses oc-
curs. The transition is not sharp, but occurs via a se-
quence of intermediate states that are found in a very
narrow range of Z [Figs. 2(a)-2(d)]. These states can
be represented by sequences of symbols L and R, de-
termined by the boundaries at which successive pulses
originate. 'We denote the back-and-forth motion by
...LRLRLR...= LR or RL and the unidirectional mo-
tion of pulses originating at the left (right) boundary by
...LLLL... = L (...RRRR... = R). In the transi-
tion regime, a periodic or nonperiodic sequence is found,
depending on the parameters [Figs. 2(b) and 2(c)]. As
above, global bifurcation phenomena are responsible for
this complexity.

From Fig. 2, it appears that the only fixed points ap-
proached by the back-and-forth and unidirectional tra-
jectories are the stationary fronts [shown in Fig. 1(a),
but unstable at the values of Z considered in this sec-
tion]. Consider the possibility that there are nearly hete-
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roclinic paths connecting one to the neighborhood of the
other. One obvious possibility is the traveling pulse mo-
tion, which clearly begins with a hot region at one end
of the domain and ends with a hot region at the other.
Another possibility arises when considering the family
of antiphase oscillations, one of which was introduced in
Fig. 1(d). Note that because of its symmetry, Fig. 1(d)
actually satisfies Neumann boundary conditions in the
center of the domain. Thus the pattern corresponding to
the left (or right) half of Fig. 1(d) satisfies the governing
equations and boundary conditions in a domain of half
the length, i.e., Z = 5.89. During each half of the oscil-
lation, the pattern appears to approach one or the other
of the stationary front solutions, suggesting the possibil-
ity that the oscillation eventually becomes heteroclinic.
However, the antiphase oscillation becomes unstable at
a pitchfork bifurcation at around Z = 8.65 and contin-
uation studies were not convergent, so we are unable to
directly confirm this possibility, though further evidence
for it appears below.

Whether the putative (nearly) heteroclinic paths are
actually followed can be determined by studying the ac-
tual trajectories that start near one of the front solutions.
These patterns, though unstable, can be computed by
continuation. For parameters in the transition region,
the linearization around the front solution has two real
positive eigenvalues; these crossed the imaginary axis as
a complex conjugate pair in the Hopf bifurcation that led
to the oscillatory front pattern of Fig. 1(b) and became
real as Z increased further. By choosing initial conditions
corresponding to the front solution plus or minus a small
component in one eigendirection, the unstable directions
can be traced out. The result of this procedure is shown
in Fig. 4 for Z = 26.930. Three of the four initial con-
ditions lead directly to a pulse that travels to the other
wall [Figs. 4(a)—4(c)]. The fourth leads to the simultane-
ous decay of the front at one boundary and growth of a
front at the other boundary [Fig. 4(d)]. This motion is
essentially one-half cycle of antiphase oscillation. All of
these initial conditions evolve into the intermediate pat-
tern of Fig. 2(b). Thus we find that both heteroclinic

(a)

FIG. 4. Results of integration in the unstable directions of
the stationary front pattern at Z = 26.930, in the transition
region between back-and-forth and unidirectional motions [cf.
Fig. 2(b)], showing that trajectories near the unstable front
undergo either antiphase or traveling pulse motions. (a) and
(b) integrations in least unstable direction; (c) and (d) inte-
grations in most unstable direction.
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paths discussed above are followed, depending on initial
conditions.

These nearly heteroclinic paths are the building blocks
for the patterns of Fig. 2. Each pattern is essentially a
concatenation of such paths and can be represented sym-
bolically. We now see that the left- and right-originating
pulses labeled L and R above correspond to one pair of
heteroclinic paths. We complete the symbolic descrip-
tion of the dynamics by labeling the two halves of an
antiphase oscillation as S and D. One period of the
unidirectional motion is a concatenation consisting of a
pulse moving from one end of the ribbon to the other,
followed by half a period of antiphase oscillation, so the
complete symbol sequence is LD or RS. The complete
sequence for back-and-forth motion is still RL, as no an-
tiphase motions are involved. In the transition region,
the concatenations are more complex, but S must always
be preceded by R and D by L. No sequences with S and
D adjacent have been observed.

To better understand this situation, we first consider
the special case in which all the paths are ezactly het-
eroclinic. This structure is characteristic of the gluing
bifurcation [26,27], a codimension-two global bifurcation
that occurs when two heteroclinic cycles (or homoclinic
orbits, in the absence of symmetry) coincide. Figure 5(a)
is a schematic summary of the double heteroclinic phase
space structure, showing also the symbols and cartoons of
the corresponding spatiotemporal structures. If the pa-
rameters are changed slightly, the structure of Fig. 5(a) is
perturbed, so that the trajectories are no longer exactly
heteroclinic. However, trajectories close to the individ-
ual heteroclinic paths can be “glued” together to form
periodic or nonperiodic orbits of various degrees of com-
plexity. This gluing process is responsible for the inter-
mediate patterns of Figs. 2(b) and 2(c). Figure 5(b) is
the schematic phase diagram showing behavior near the
double heteroclinic point in parameter space [26,27]. The
unfolding parameters p; and po are chosen so that yu; =0
and py = 0 are the loci of the two individual heteroclinic
bifurcations. Thus the doubly singular structure of Fig.
5(a) arises at the origin of Fig. 5(b). The crosshatched re-
gions indicate intermediate behavior and in fact contain
an infinite number of homoclinic and heteroclinic connec-
tions. Our numerical results are consistent with a path
through parameter space corresponding to the thick di-
agonal line. The antiphase motion becomes heteroclinic
as the line py = 0 is crossed and the back-and-forth mo-
tion becomes heteroclinic within the transition region, at
p1 = 0. Note that this unfolding also predicts that a tran-
sition from antiphase to unidirectional behavior might be
found elsewhere in parameter space. This is observed in
numerical simulations [29].

In contrast to the previous transition, during the tran-
sition from back-and-forth to unidirectional pulses the
instantaneous phase plane characterization changes be-
tween B’ and O each time a pulse approaches a bound-
ary. Loosely speaking, a sort of “dynamic” saddle-node
bifurcation occurs as the low-temperature stable steady
state loses existence. Of course this is not actually the
case because the current is not a parameter, but a func-
tional of the solution, and because the spatiotemporal

dynamics do not occur on the phase plane. Nevertheless,
the instantaneous phase plane characteristic is related to
the overall behavior of the system. Figure 6 shows the
instantaneous nullclines f = 0 and g = 0 at the high-
est and lowest current values obtained for the pattern
of Fig. 2(b). The “dynamic saddle-node bifurcation” is
apparently a necessary condition for the transition, as it
allows the ignition of the extinguished region of the do-
main and thus the birth of a new front (the antiphase
motion). Note, however, that in the intermediate region,
this dynamic saddle-node bifurcation may occur when-
ever a pulse approaches a wall, whether the pulse disap-
pears or bounces, so it is not a sufficient condition.

To conclude the discussion of the transitions, Fig. 7
shows a schematic bifurcation diagram, showing all rele-
vant branches. The two boxed regions contain the transi-
tions discussed above, while the remainder of the diagram
shows the global branch structure of the solutions that
contribute to these transitions. Solid curves are stable

(b) T
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FIG. 5. (a) Schematic global phase-space structure at the
gluing bifurcation. (b) Behavior in the parameter space neigh-
borhood of the doubly degenerate structure of (a), which oc-
curs at the origin in this phase diagram. The cross-hatched
regions indicate intermediate patterns. The thick diagonal
line represents the path through this diagram taken in our
system by increasing Z at the parameters chosen.
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FIG. 6. The nullcline f = 0 at the minimum (dotted curve)
and maximum (dashed curve) current values during the inter-
mediate motion in Fig. 2(b), Z = 26.930. The nullcline g = 0,
which is independent of current, is also plotted (solid curve),
to show the “dynamic saddle-node” behavior associated with
the back-and-forth to unidirectional transition.

branches and dashed curves are unstable. The horizontal
line at the bottom represents the spatially uniform solu-
tion (u). The three branches emanating from it are, from
left to right, the antiphase oscillation of wave-number
unity (apl), the stationary front (sf), and the antiphase
oscillation of wave number two (ap2). The oscillatory
front solution of Fig. 1(b) is labeled (of). The curves la-
beled bf and ud denote the periodic back-and-forth and
unidirectional motions [Figs. 2(a) and 2(d)], respectively.
The notations PF, H, and PD denote pitchfork, Hopf,
and period-doubling bifurcations, respectively, and PFP
denotes a pitchfork bifurcation of a periodic solution. Ho
indicates a homoclinic connection and He a heteroclinic
one. Corresponding to the Ho and He labels are ver-
tical lines connecting the solutions involved. C is the
transition region including the period-doubling cascade,
symmetric crisis, and reverse transition to the periodic
back-and-forth motion. G denotes the transition region
found in the unfolding of the gluing bifurcation [Figs.
2(b) and 2(c)]. Note that the C and G regions have been
greatly oversimplified. There are infinitely many global
bifurcations within each of these regions; for simplicity
only one was shown for each.

FIG. 7. Schematic bifurcation diagram, showing the solu-
tions that contribute to the global phenomena discussed here.
The description of the labels is in the text.
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There exist some similarities between the patterns pre-
sented here and the “blinking states” found near the on-
set of binary fluid convection [34,35]. These states exhibit
irregular reversals in the directions of traveling wave mo-
tions, somewhat like those observed here. An analysis
by Dangelmayr and Knobloch shows that these blinking
states arise in the unfolding of the Hopf bifurcation in
systems with broken circular symmetry (due to distant
sidewalls in the case of convection) [36]. A heteroclinic
connection occurs in this unfolding and leads to the ir-
regularity of the blinking states. In short, these results
share three qualities with the results presented here: a
reflection invariant domain, traveling motions, and hete-
roclinic cycles. However, the convection experiments and
the corresponding analysis refer to small amplitude trav-
eling patterns near the initial onset of instabilities. In
constrast, the traveling pulses described in the present
work are “far from onset” and do not originate as insta-
bilities of a uniform state. Thus they are not accessible
by a small amplitude analysis. Furthermore, there are
two heteroclinic cycles involved in our back and forth to
unidirectional transition, not one. Therefore, although
there is a resemblance between the blinking states and
the present results, the actual correspondence between
the results appears to be rather indirect.

V. THE EFFECT OF NONLOCALITY

The results have been presented and discussed with-
out direct reference to the importance of the spatial non-
locality. The most important property of this effect in
the present example is that it is desynchronizing. If one
section of the domain ignites, another must extinguish.
There are several consequences to this constraint.

(i) Stable traveling pulses can arise at current values for
which the unconstrained system is bistable. Both fronts
of the pulse must move at the same velocity, because the
length of the ignited region cannot change.

(ii) Stationary fronts are stabilized in the absence of
diffusion of inhibitor (f). Desynchronization forces the-
current to approach the (unique) value that will stabilize
a stationary front, again by constraining the width of
the ignited region. In contrast, if the current is fixed,
stationary fronts are generally structurally unstable when
6 does not diffuse.

(iii) Antiphase motions are promoted. The constraint
prevents the system from oscillating uniformly, so oscil-
lating portions of the domain are out of phase.

The global phase structure shown above depends inti-
mately on all three of these points and thus on the un-
derlying desynchronizing nonlocal effect. Furthermore,
the combination of the integral constraint, the tendency
of individual elements to evolve toward either ignited or
extinguished states, and the preference of the dynamics
for long wavelengths acts to restrict the region of func-
tion space in which solutions to this problem are likely to
be found. This combination is a possible underlying rea-
son for the wealth of global bifurcations in this system.
In other words, under such constraints, it may be that
solutions are bound to run into one another. It would
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be interesting to see whether more rigorous statements
to this effect can be made.

The nonlocality imposed in our model arises from an
integral constraint of a dependent variable—a very strong
condition. In many of the other examples mentioned
above, desynchronizing effects are weaker. The nonlin-
ear current systems where the back-and-forth and unidi-
rectional pulses are observed consist of a spatially dis-
tributed medium in series with a simple resistor and
(constant) voltage source [6,7]. The spatially distributed
medium consists essentially of a continuum of nonlinear
elements connected in parallel and diffusively coupled.
The voltage drop across the resistor is proportional to the
integrated current density in the distributed medium. A
local decrease in current density leads to an increase in
voltage across the entire distributed medium. The total
voltage is directly constrained, but that across the dis-
tributed medium is not. A system more closely related
physically to the one studied here is a ring of catalytic
metal in a well-mixed flow reactor. In this reactor, gas-
phase transport is virtually instantaneous, so a decrease
in reaction rate at one point on the ring causes an in-
crease in the gas-phase reactant concentration and thus
in the reaction rate elsewhere on the ring. Complex pulse
motions have been experimentally observed in this sys-
tem [21].

VI. CONCLUSION

We have described a spatially nonlocal reaction-
diffusion model that displays complex and interesting
spatiotemporal dynamics. These dynamics can be under-
stood in terms of global bifurcations involving stationary
pulses, traveling pulses, and antiphase oscillations. The
phase-space framework for the global dynamics is directly
related to the desynchronizing nonlocal effect. Such ef-
fects also arise in other systems, where some of the be-
havior analyzed here has been observed experimentally.
In addition, the dynamics we observe are, to a degree,
independent of the specific form of the nonlinearity, as
qualitatively identical transitions also arise in a model
with simple polynomial nonlinearities. Thus we believe
that the foregoing discussion provides a foundation for
analyses of other physical systems with nonlocal effects.
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